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Variational data assimilation

Dual formulation
Concatenation over time:

min
δx∈Rn

1
2
‖x − xb + δx‖2B−1 +

1
2
‖H δx − d‖2R−1

with H ∈Mm,n(R)

The problem can read:

min
δx∈Rn

1
2
‖x − xb + δx‖2B−1 +

1
2
‖a‖2R−1

s.t. a = H δx − d
KKT conditions:

B (R−1HBHT + Im)λ = R−1(d − H(xb − x)), δx = xb − x + BHTλ

RPCG (Gratton and Tshimanga, 2009)
B λ: apply (preconditioned) truncated conjugate gradient in the HBHT inner

product (dimension m).
B Compute δx from λ.
B Equivalent to the primal approach.
B Easily truncated without compromising convergence of the GN algorithm.

Computationally attractive when m << n.
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Observation thinning

Motivations
"Huge" amount of data (even if the system is under sampled).

B Assimilation computationally expensive.

Heterogenous spatial distribution of the observation.

B Numerous observations in some areas VS few observations in some others.

Do we need to assimilate all the observations to reach a target accuracy?

Selection of observations
Criteria

B Do not assimilate the full data set.
B Computationally tractable.

Observations: a nested hierarchy {Oi}ri=0 with

∀i ∈ [0, r − 1], Oi ⊂ Oi+1
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Outline

1 A "multigrid" observation thinning

2 Towards a multigrid dual solver?
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A bigrid data assimilation problem (I)

Notations
Oc the coarse observation set with mc observations and Of the fine observation
set containing mf observations such that mc < mf and Oc ⊂ Of .

Γf : Rmf → Rmc a restriction operator from the fine observation space to the
coarse one.

Πc the prolongation operator from the coarse observation space to the fine one
such as Πc = σf ΓT

f for some σf > 0.

Fine and coarse subproblems
The fine observation grid data assimilation problem:

min
δxf ∈Rn

1
2
‖x + δxf − xb‖2B−1 +

1
2
‖Hf δxf − df ‖2R−1

f
(1)

B (δxf , λf ) s.t.
{

(R−1
f Hf BHT

f + Imf )λf = R−1
f (df − Hf (xb − x))

δxf = xb − x + BHT
f λf
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A bigrid data assimilation problem (II)

Notations
Oc the coarse observation set with mc observations and Of the fine observation
set containing mf observations such that mc < mf and Oc ⊂ Of .

Γf : Rmf → Rmc a restriction operator from the fine observation space to the
coarse one.

Πc the prolongation operator from the coarse observation space to the fine one
such as Πc = σf ΓT

f for some σf > 0.

Fine and coarse subproblems
The coarse observation grid data assimilation problem:

min
δxc∈Rn

1
2
‖x + δxc − xb‖2B−1 +

1
2
‖Γf (Hf δxc − df )‖2R−1

c

Or equivalently:

min
δxc∈Rn

1
2
‖x +δxc−xb‖2B−1 +

1
2
‖ΠT

c (Hf δxc−df )‖2R̄−1
c
, with R̄−1

c = (
1
σf

)2R−1
c (2)

B (δxc , λc) s.t.
{

(R̄−1
c ΠT

c Hf BHT
f Πc + Imc )λc = R̄−1

c ΠT
c (df − Hf (xb − x))

δxc = xb − x + BHT
f Πcλc
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An a posteriori error bound

Theorem
Let δxf be the solution to the fine problem and λf the corresponding Lagrange
multiplier to the constraint. Analogously, let δxc be the solution to modified coarse
problem (2) and λc the corresponding Lagrange multiplier. Then the a posteriori error
bound satisfies the inequalities

‖λf − Πcλc‖2Rf +Hf BHT
f
≤ ‖df − Hf δxc − Rf Πcλc‖2(Rf +Hf BHT

f )−1

‖λf − Πcλc‖2Rf +Hf BHT
f
≤ ‖df − Hf δxc − Rf Πcλc‖2R−1

f

Remarks
Rf + Hf BHT

f : difficult computation of the inverse in variational data assimilation
(B ∼ complex matrix-vector operator).

Bound: no need for the solution of the fine problem (λf or δxf ).

Observations: "useful" if the associated components of λf − Πcλc are large.

8



How to construct Of from Oc?

Assumptions
Coarse observation set: partition of the observation space in a finite number of
cells {cj}pc

j=1 of measures {wj}pc
j=1.

Auxiliary set Õf : all observations in Oc with the addition of a single additional
potential observation point in the interior of each cell.

Selection

Error indicator for each cell cj of the auxiliary observation set Õf

∀j ∈ Np ηj = wj 〈(d̃f − H̃f δxc − R̃f Π̃cλc)|j , (R̃−1
f (d̃f − H̃f δxc − R̃f Π̃cλc))|j 〉

Construction of a minimal set Sη: θ
p∑

j=1

ηj ≤
∑
k∈Sη

ηk , θ ∈ (0, 1)

B Priority to non-included cells with maximal error indicator values.

Of = Oc ∪
(
∪k∈Sηok

)
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An example of observation sets

Coarse observation set Oc Auxiliary observation set Õf

Fine observation set Of
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Incremental 4D-Var with a multigrid observations thinning
1 Set i = 0, initialize x and the coarse observation set O0.
2 Find the solution (δxi , λi ) to the problem

min
δxi∈Rn

1
2
‖xi + δxi − xb‖2B−1 +

1
2
‖Hi δxi − di‖2R−1

i
,

by approximately solving the system
(R−1

i HiBHT
i + Imi )λi = R−1

i (di − Hi (xb − xi ))

using RPCG and then setting δxi = xb − xi + BHT
i λi .

3 Given the set of observations Oi , construct the auxiliary set Õi+1.

4 For each cell cj of observation set Õi+1 compute the error indicators
ηj = wj 〈(d̃i+1 − H̃i+1δxi − R̃i+1P̃i i λ̃i )|j , (R̃−1

i+1(d̃i+1 − H̃i+1δxi − R̃i+1P̃i i λ̃i ))|j 〉
with λ̃i a modified Lagrange multiplier.

5 Build the set Sη such that

θ1

pi+1∑
j=1

ηj

 ≤ ∑
k∈Sη

ηk

using the bulk chasing strategy.
6 Construct the set Oi+1 as

Oi+1 := Oi ∪

 ⋃
k∈Sη

ok


7 Update xi ← xi + δxi , increment i and return to Step 2.
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Example: the Lorenz-96 system

Configuration of the experiment
Model

B u is a vector of N-equally spaced entries
around a circle of constant latitude.

B Chaotic behavior for F > 5 and N > 11.

∀j ∈ NN , θ ∈ NΘ,
duj+θ

dt
=

1
κ

(−uj+θ−2uj+θ−1 + uj+θ−1uj+θ+1 − uj+θ + F )

uN = u0; u−1 = uN−1; uN+1 = u1

with N = 40, F = 8, κ = 120 and Θ = 10,
T = 120 and ∆t = 1

80

Background and observations

B Normal distributed additive noise: N (0, σ2
b/o)

with σb = 0.2, σo = 0.1.
B B = σ2

bIn and R = σ2
o Ip.

Coordinate system

Dynamical system (space and time)
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Example: Cost function and RMS error
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Outline

1 A "multigrid" observation thinning

2 Towards a multigrid dual solver?
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Multigrid methods for solving Ax = b with iterative methods
Idea

Large scale components that are slow to converge on the high resolution grid may
be reduced faster and at a smaller cost on a coarser resolution grid.

Also applicable for nonlinear systems (Full Approximation Scheme; Brandt, 1982)

Two-level grids algorithm
Pre-smoothing: Apply ν1 steps of an iterative method S1 on a fine grid

Af xf = bf , xf = Sν11 (xf , bf )

Coarse grid correction
Transfer the residual onto a coarser grid

rc = I cf (bf − Af xf ), I cf : restriction operator

Solve the problem on the coarse grid
Acδxc = rc

Transfer the correction onto the fine grid
xf = xf + I f

c δxc , I f
c : interpolation operator

Post-smoothing: Apply ν2 steps of an iterative method S2 (most of the time
identical to S1) onto a fine grid

Af xf = bf , xf = Sν22 (fx f , bf )
15



Multigrid methods for solving Ax = b with iterative methods
Cycles

W-cycleV-cycle

Fine grid

Coarse grid

Intermediate grid

Convergence (Hackbusch, 2003)

Smoothing property: smoothing steps should remove most of the error at small
scales

Ellipticity of A (high frequencies associated to the largest eigenvalues).
Smoothing properties of the iterative solver.

Prolongation/restriction operators: no amplification of the small scale components
during a coarse correction step.

Approximation properties: coarse grid correction steps should remove the error at
large scales.

Ac close to Af (discretization of the differential operator, Ac = I c
f Af I f

c )
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Multigrid methods in variational data assimilation
First-order necessary condition: ∇J(x) = 0.

Optimal control, constrained-PDE optimization: Brandt, Lewis and Nash (2005),
Borzi and Schulz (2009).

4D-variational data assimilation: Neveu et al. (2011), Cioaca et al. (2013).

B State space formulation.

Dual space formulation: A = HBHT + R; b = d − H(xb − x).

Numerical experiments
Solution of a linear advection equation:

∂u
∂t

+ c
∂u
∂x

= 0, with c > 0, x ∈ [0, L], t ∈ [0,T ]

with c = 1m.s−1, L = 100m,T = 78.125s

Control variable: u(t = 0).

B = σ2
be
− d2

Lcorr2 , R = σ2
o I .

No observation thinning strategy: uniform observation grid at each level (3).
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Numerical application

Primal approach: 1 V-cycle. Dual approach: 100 V-cycles.

Multigrid dual approach
Increase of the residual after each
coarse grid correction step.

Conditions of convergence not
fulfilled.
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Conclusion and perspectives

A variational data assimilation approach combining observation thinning and
dual-space conjugate-gradient techniques.

B Exploiting the nested structure of the observations.
B A posteriori error bounds based on Lagrange multipliers.

Preliminary experiments.

B Faster decrease of the cost function vs the amount of assimilated
observations or flops.

Preliminary experiments with a multigrid solver in dual space.

B No improvement of the performances compared to an unigrid solver (even
worst).

B Characteristics of the problem not suitable for multigrid strategy? (Lagrange
multipliers ∼ "noise")

Further investigations

B Modelling of the observation error covariance matrix properly taking into
account the nested structure of the observations.

19



Thank you!
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Example: Observation sets and adaptive errors

Oi Oi+1

ηj εj = wj

〈
∆λi+1|j , [(R̃i+1 + H̃i+1BH̃T

i+1)∆λi+1]|j
〉
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Example: Control variable

Background vector and true u(0) Algorithm solution and true u(0)
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Example 2: 1D wave system with a shock

Configuration of the experiment
Model

∂2

∂t2 u(z , t)− ∂2

∂z2 u(z , t) + f (u) = 0,

u(0, t) = u(1, t) = 0,

u(z , 0) = u0(z), ∂
∂t u(z , 0) = 0,

0 ≤ t ≤ T , 0 ≤ z ≤ 1,

with f (u) = µeηu, ∆x ≈ 2.8 · 10−3 (360 grid
points), T = 1 and ∆t = 1

64 .

Background and observations

B Normal distributed additive noise: N (0, σ2
b/o)

with σb = 0.2, σo = 0.05.
B B = σ2

bIn and R = σ2
o Ip.

Initial x0 := u0(z)

Dynamical system (space and time)
23



Example 2: Observation sets and adaptive errors

Oi Oi+1

ηj εj = wj

〈
∆λi+1|j , [(R̃i+1 + H̃i+1BH̃T

i+1)∆λi+1]|j
〉
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Example 2: Control variable

Background vector and true u(0) Algorithm solution and true u(0)
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Example 2: Cost function and RMS error
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